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In a number of cases it ls convenient to solve problems of the theory of elasticity in 
terms of stresses. In order to do this, it is necessary to append the equations of compati- 

bility ln terms of stresses to the equations of motion. These compatibility equations fol- 

low from the equations of compatibility in terms of strain and the constitutive equations 

- the stress-strain relations. For media which are physically and geometrically linear, 
the compatibility equations in terms of strains are the Saint-Venant compatibility equa- 
tions, and those in terms of stresses are the Beltrami-Michell equations. The generaliza- 

tions of these equations for geometrically nonllnear media are developed below. 

1. A property of fourth-ordar tea8orl of rpecirl form, Let us con- 
sider a three-dimensional space in which the distance between any two nearby points is 

given by the positive definite quadratic form 

ds= = gZ8 dx’ dss (I.11 

where the functions g,s (x1, za, P) are the components of the symmetric metric tensor. 

Here and in what follows it will be assumed that a summation is carried out with respect 
to a script which occurs twice and that the Greek scripts take on the values 1, 2, 3. 

let us take a fourth-order tensor AvXh,, in this space having the following symmetries 

A XVI* = - 40~ 9 4xp>. = - .4’,x)rp 9 +x = -4,x>+ (1.2)’ 

As is easy to show, in three-dimensional space this tensor has only six independent 

components, corresponding, say, to the following values of the scripts : 

v+ = 2112, 3223, 1331, 312i, 1232, 2313 (f *3) 

In general it is possible to associate six contracted tensors of second order with a 

fourth-order tensor by means of contraction of two scripts. However, for the tensor under 

consideration, only one of these contracted tensors is independent because of the sym- 
metries (1.2). This one may be taken as that obtained by contraction with respect to 

the first and last scripts A,,. = .&%;I~ (1.4) 

where 
(1.5) 

The contraction (1.4) is a symmetric tensor. This assertion follows from the symmetry 

properties of the tensors occurring in its definition. Indeed, 

A,, z= gV’Qty,.X~= b+&,~X = glLy+i,u= A,, 

Therefore, independent equations are determined in (1.4) for the values of the scripts 

xh = ii, 22, 33, 12, 23, 31 (i .6) 

Thus, in a three-dimensional space the fourth-order tensor A “,+ with the symmetries 
(1.2) has exactly the same number of independent components as the symmetric tensor 

A xh. The tensor A,, is expressed in terms of the tensor Avx)+ by Eq. (1.4). We shall 
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show that, conversely, &A,, can be expressed in terms of the symmetric tensor A,,. To 
do this we form a fourth-order tensor having the symmetries (1.2) from some symmetric 
second-order tensor B,, and the metric tensor g,, . We now examine the equations 

A;xr+= GPV, - gx$v), + g&c, - i@,* (1.7) 

in which the scripts take on the values (1.3). These equations may be regarded as a sys- 

tem of six linear, algebraic equations in the six unknown quantities B,a (a < 0 =l. 2,3). 
It is not difficult to verify that the determinant of the system (1.7) has the value 

-2det II g,a II 0% B = 1, 2, 3) 

and is then nonzero because of the positive definiteness of the form (1.1). The system 

of Eqs. (1.7) is, therefore, solvable. In order to compute the solution of this system, we 

transform it to an equivalent system. It follows from the symmetry properties of the 

tensors on the right-hand side of (1.7) that the system of six equations under considera- 

tion is equivalent to the full system (1.7) in which the scripts VX?+ may all take on the 

values 1.2.3. Now multiply the equations of the system (1.7) by g”’ and sum on the 
scripts v and p. Then considering Eqs. (1.4) and (1.5), we find as a result that the sys- 

tem (1.7) can be expressed in the form 

AX, = Jg,, +Bxh (J = .P RJ,) (i-8) 
The following equation is a consequence of (1.8): 

I E gY’A,, = 41 (1.9) 

This relates the invariants of the tensors A,, and B,,. Equations (1.8) and (1.9) per- 
mit us to determine the unknowns in the form 

B,, = A,, - %Ig,, 

Returning to the relations (1.7). we find the components of the tensor A,,+ expressed 
in terms of the components of A,, by means of the linear homogeneous equations 

A vx>.p= gxa4, - JsX,A”,, + &,A,, - .%,A*, + VJ (gq&g”i -&,&L) (1.10) 

These equations then solve the problem posed. 

The relations (1.4) and (1.10) allow us to assert that if one of the tensors A,, A,,,,, 

is zero, then the other one is also. Thus the following Theorem is proved. A necessary 
and sufficient condition for the vanishing of a tensor Avwhlr having the symmeMes(1.2) 

is the vanishing of its contraction A,,. 

This Theorem makes it possible, for instance, to express the conditions for a space to 

be Euclidean in various forms. It is well known [I] that the condition of the space being 
Euclidean is the vanishing of the Riemann-Christoffel tensor 

where 

ar phv ar 
R “x?b= - - 

C3XX 
* + f’o (rodapv - rodayx) = 0 (1.11) 

are the Christoffel symbols. The fourth-order Riemann-Cbristoffel tensor also possesses 
the symmetries (1, 2). Therefore, in three dimensions it has six independent components 

corresponding to the values (1.3) of the scripts vxlip. The condition of the space being 
Euclidean is. therefore, a system of six differential equations which the six functions 
Rolp (a < B = 1, 2, 3) must satisfy. 
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The symmetric second-order tensor, the so-called Bicci tensor 

R,, = gYPR”XIH 

is associated with the Biemann-Christoffel tensor by contraction on the first and last 

scripts. By virtue of the theorem which has been proved, the condition that the space is 
Euclidean can be stated as the vanishing of the Bicci tensor 

This condition is another system of six equations in the same six functions g,s. The 
independent equations correspond to the values of the scripts in (1.6). 

2. The equrtlon, of oomprtlblllty in trrmr of ,trrln. The defor- 
mation of a body aa it goes from some initial configuration (corresponding to the instant 

of time r”) to the final configuration (corresponding to the instant t) is described by a 
symmetric, second-order tensor e , the strain tensor. The components of this tensor are 

defined by the equations fl] 

2a,a (21, P, 9, L) = g,a (21, 22, zp, 1) - g$ (2’9 xa, xs, r”) (2.1) 

where g,+ and g,B are the components of the metric tensor in the comoving (material) 

coordinate system 9, z2, zs at the instants t’and t , respectively. For continuous defor- 

mation the six functions (‘2.1) satisfy the compatibility equations. These express the 
fact that the deforming medium is in a three-dimensional Euclidean space. They are 
obtained in the following way. We shall identify the material coordinate system zl, 9, 

P at time t with the reference system relative to which the motion of the medium is 
considered. We take the condition that the space is Euclidean in the form of the vanish- 

ing of the Biemann-Christoffel tensor. Then at the instants of time I and to we have, 

respectively, Eqs. (1.11) and the equations 

(2.2) 

in which the values of the quantities at time to are indicated by the degree symbol. 

With the aid of the equations gO,a=g,a-2a,a (2.3) 

which follow from the definition of the components of the strain tensor, a connection 
can be established between the Christoffel symbols at the two instants of time in the 

form 
rOaey = racy - ~apr c %f3 a%, aeg, 

=$r =-&Y- + - g- ap t(2.4) 

Substituting (2.3) and (2.4) into (2.2) and subtract$ng the result from Eq, (1.11). we 

obtain 

- gclaa Ghcapv - %Axopv) = 0 (2.5) 

where, in accordance with the values in (1.3). six equations are determined by the scripts 

VXJ+ , and where 
r O‘hXU~” = rmXxrap” - r(6x”r(l)LXt c oawapv =c G oAx O&Y - %AvCapw 

B UXXqLV = roxxcapv + cd~pv - r~dopw - GoAvrapw 

II &$” n = II goa, n-1 = II Em, - %, n-l 
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These are then the equations of compatibility written ln arbitrary coordinates. We shall 

show that the left-hand sides of these equations can be expressed in terms of the covari- 
ant components of the strain tensor and the covariant derivatives of these components. 
Let us take the first and second covariant derivatives of the components of the strain ten- 

sor 

!a 
VxVA epv = az~ Ve+,, - \;J~epJL - VAezJ& - V~e,,G 

It is easy to verify that the following relations hold in Euclidean space : 

A direct computation will verify the correctness of the equation 

ema = gaTeto = l/2 (6,” - goTgo,,) 

On the basis of Eqs. (2.7) and the equation 

2giWe,’ = g:,’ _ gao 

the following relation can be established : 

go”” co&p” - CmAvColpw) = ggao qoXwrpv - kgau - 8”) VLhp” - 

--r oaxapv) --2ea0LAxap” 

(2.6) 

(2.7) 

(2.6) 

If (2.8) ls subtracted from (2.6). an equation is obtained whose right-hand side coin- 
cides with the left-hand side of the equationsofcompatlbility (2.5). Therefore, the equa- 

tions of compatibility of strain may be written in the form 

VxVxe~,,-l-VvV~ek -VxVke~,-Vt7,V~e,,-g~0(C,XxCapv-C~XYC~ILY)= 0 (2.9) 

The quantities g,$ are the components of the metric tensor Go in the material coordi- 
nate system at the initial instant of time. However, at the general time t tile metric 

tensor G has the components g,a in the material coordinate system, and t,ie quantities 

g$ at that instant are the components of some other tensor 2’ which differs from the 
metric tensor. It’ is easily seen that the quantities Poe at the general time t are the com- 
ponents of the tensor T-r ,the inverse of the tensor t. From the Cayley-Hamilton iden- 

tity for the tensor T taken in the form 

T$( T2-ZIT+Z&)=G 

where I,, Js, 1s are the principal invariants of the tensor T, it follows that T-’ can be 
represented in the form 

T-1 = + G -+T++T” 

In view of Eq. (‘2.3). the tensor T. is a function of the swain tensor 

T=C-2e 

A simple calculation shows that the invariants of this tensor are expressed in terms of 
the principal invariants I, (u = 1, 2, 3) of the strain tensor according to the formulas 

II = 3-2J,, I, = 3-411 + 4Js, 1s = i - 2Jr + 4Ja - 8Js 
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In an arbitrary curviIlnear coordinate system the lnvariants of the strain tensor are 
expressed in terms of its covarlant components as 

JI = gaBe,8, 1% = 1/2eaa’,uotg~~eeaoe,,, JS = l/&RYeDoTez,epoe,, 

where easy are the components of the alternating tensor. 
The inverse tensor Is expressed in terms of the strain tensor according to the equation 

T-l = KIC f K,e + K19, K1 = (i-2J1 + 4Jo)A 

K, = 2(1-2J1)A KS = 4A, A = (I--2Jr + 412-81a)-’ (2.10) 

In tensor notation this equation has the form 
a0 

go = Krg’” + K2gaoggZUao+ + K&“ggS~gY~eo5eg, 

The relations (2. ‘7) and (2.10) make It possible to express the compatibility equations 
(2.9) in the form 

VxV~epv+VvVF%,, -V)xVpe~v-VvV~epr -Wd"+&sao~g'oeor -I- 

+~~aogZBgY~eo,~g,) I(V,e,A+VAea,,-V~e,,) W,e,~+V,e,,--VaeJ-- 

-bsid + VA%,-V,ebl (V,e,~+VV,e,,- V:e,,)I=o (2.11) 

which contain only the covarlant components of the strain tensor and their first and 

second covarlant derivatives. In these equations the scripts v%hp take on the values in 

(1.3). 
Equations (2.11) hold in arbitrary curvlIlnear coordinates. In the special case of a 

rectangular Cartesian coordinate system 

the compatlblllty equations (2.11) take the form 

- - Wd,, + Ge,, + Kse,,e,,) X 

K 
ae ox 

X- ax* t 
ae,, aeAx )C asp aeav .--- 
ad a9 

----f-- 
as w 

%A hov $,, aa,, - 
i 
-+---- - as )( ad axw ak+ 

a$&” -_ 
axa ) 

%x .+-- 
axp 

ae w - co 
ax= )I 

where the scripts assume the system of values (1.3). 
We note that Eqs. (2.11) are vaIid for arbitrary strains. If the strains are small, so that 

both the components of the strain tensor themselves and their first and second derivatives 
with respect to the coordinates are small relative to unity, then the nonlinear terms in 

(2.11) become small terms of higher order and can be neglected. The compatibiUty 
equations can then be written in the form 

(2.12) 

where the scripts take the values of (1.3). These are the Saint-Venant compatibility 
equations for small strains written in arbitrary coordinates r2]. In rectangular Cartesian 

coordinates these equations have the form 
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We note that the form of the compatibility equations (3.9) can also be obtained from 
other considerations. Let us first consider some relations which will be needed. The ele- 
ments of the coordinate bases of the material coordinate system at the initial and gene- 

ral times are defined in terms of the radius vector of the point at the appropriate time 

by the equations #I = are ar 
P &i? ’ 

aF = - 
axp 

By differentiating with respect to the coordinate .z’ the equation 

r - rlJ = w = w%, = w. 7 (0) a, 

which defines the displacement vector, we obtain equations which relate the base vec- 

tors for the different times as follows: 

a 
P 

= CKJ)Ya(0) = C(,OaoB, 
P’ Y 

atp) = C,:a, = C,,a’ (2.13) 

The coefficients in these expansions are expressed in terms of the components of the 
displacement vector in the different bases by the formulas 

c’p”‘: = s; + v(po)woy , C’p”e’ -_ CO)dlg(,ql = g($ + o’;‘w’so’ 

c,: = s,: - vowA, C,, = C,!g-g,, = g,, - v,w, 

and are connected by the obvious relations 

C(O)YC a=6 B 
P’ Y’ P” 

c,y c(O;y = 6 @ 
w. (2.14) 

The following Lemma holds: the matrices Cg and C, of the expansions (2.13) are 

the transposes of each other, i.e. c,, = c$j (2.15) 

To prove the Lemma, we form the scalar product of the vector equations (2.13). We 
have 

C 
UP 

#-a =C($ao*.a(of 
P I.0 

From this result and the reciprocity of the base vectors 

&ap = srp. a0 
K,(J) = Ba 

.o 

we arrive at Eq. (a. 15). Lemma is thus proved. 
The relation (2.15) can be expressed in another,equivalent form. To this end, we 

multiply both sides of it by the quantity giw gap and sum on the scripts o and p; as a 
result we obtain go”” c,: = g%-+(O),: (2.t6) 

This means that the matrices in the expansions of the base vectors 

uo= = g, au,@) - 0 - g, ‘OCo4a,, 3.” = gap ap = gapC(0),4 r&O) 

are also the transposes of each other. In view of the properties (&14), Eq. (8.16) can 
also be written in the form P = RozV,:C,: (2.17) 

let us now return to the derivation of the compatibility equations. It is well known 

from l-l] that the strains are expressible in terms of the displacements by the equations 

SPY = V,UJ, + v,w, - gO’V w P 0 v,w, (2.18) 

The compatibility equations will be obtained if the displacements are eliminated 
from these equations. In order to do this, we calculate the first and second covariant 
derivatives of the components of the strain tensor with respect to the coordinates 
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2v+ q = VAVpv -I- VAVP,, - P 67q&wmQ, -I- vpY$7J7yw~~ (2.19) 

2V,VA5 = VxV~Vpv -I- VwVAVyWp - (2.20) 

- P 67,v~v,=$7”w, -I- v~vpq7xvy~I i- v)xvcrw3v~vyw, -I- V,~,V,V~V,W,) 

As is easily verified, it is possible to eliminate the third derivatives of the displace- 

ments from (2.20) by forming the following combination: 

vxvAeFv + VvVp% - VJQAv - vvv>.elrx = (2.21) 

= g= (V,V,?J?,V~.W, - v~v,~&v”~*J 

The expression which is obtained contains only second derivatives of the displacements. 
It turns out to be possible to eliminate the latter using Eqs. (2.19). In fact 

C 
Therefore, 

= Vx’Q + v&w - v,ej., = v*vPoCo=. oAw - 

rL&b~, - Co&~x = c,:c,: (v,v,r~~,v,v,w~ - V’hVpWaV*Vy~$ 

We then multiply both sides of the last equation by gz”, sum on a and o , and by use 
of the relation (2.17) we have 

gt” (Co~xC’aPY - Co).“CaPX) = go= (C7,vr&wavxv$% - V,V,YJLV”W~) (2.22) 

It is now easy to see that by subtracting (2.22) from (2.21) we eliminate the displa- 
cements entirely and thereby obtain equations for the quantities e,s which coincide 

with the compatibility equations in the form (2.9). 
Thus the expressions (2.18) for the stzains in terms of the displacements may be 

regarded as integrals of the equations of compatibility. 
We remark that for strains and angles of rotation which are small compared with unity, 

the nonlinear equations (2.18) may be replaced by the linear relations [3] 

2t& = VICAR, + v,l+ (2.23) 

Computing the second covariant derivatives of these and forming the combination 

(2.21) we-obtain equations which do not contain the displacements and which agree 

with the Saint-Venant equations (2.12) Therefore, the Saint-Venant equations are a 
consequence of the linear equations (2.23). 

The equations of compatibility state that a certain fourthcorder tensor is zero. It is 
not difficult to verify that this tensor possesses the symmetries (1.2). Therefore, by vir- 

tue of the Theorem of Sect. 1. Eqs. (2.9) are equivalent to the equations obtained from 
them by contracting with respect to the scripts v and p. These equations have the form 

A++ VxVhJ~-VXVLLeh~-V~VILex~-g~Wg'"'(C,,,C,pV-Cc,,,c,,,) -=(I W4) 
where VP is the operator of contravariant differentiation, A is the laplacian operator, 
and the scripts xh have the values of (1.6). Written out in full, Eqs.(2.24) have the 

expressions 

Ae,,, + V,VhJ~ - VxVpe~.b - V~V’~,+, - (Kdm f K2PP~~T f 

+ Ksgaog7Bg’~eo,Ep,) I(V,e,, + VTh& -V&.,Hw%IL - V,Jd- 

-gp’(V,e,h+ Vheov-VwedWw~2p +V,Eax- V,epx)l~O 

The equations which have been obtained are a special form of the compatibility equa- 
tions ; they are equivalent to Eqs. (2.11). In rectangular Cartesian coordinates these equa- 

tions are of the form 
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+ 

- 

i 

a%, aJ1 
2--- - 

a# aza ) 

aeb, ae,, ah 

- 3F N 

-+-- 
axx a# 

aepx 
‘XT )I =U 

For small deformations it is permissible to neglect the nonlinear terms in (2.24) and 

to write the equations in the form 

de,, -I- V,VhJ~ - V,V%, - VAVPexP = 0 (2.25) 

This is a special form of the Saint-Venant equations of compatibility for small strains 
given in arbitrary coordinates [4]. In Cartesian coordinates they have the form 

a%d 
-+ 

aaJ1 a%& a%+ 

a# a# 
----------_() 
a2 a& azx a# ad a$ 

8. The comprtibilfty equrtlonr in term8 of 8tr688a6, In the physi- 
cally linear theory of elasticity it is assumed that the constitutive law for the medium 

is the generalized Hooke’s law, which states that the components of the strain tensor e,a 

are ho.nogeneous linear functions of the stress tensor P,, 

(3.t) 

where Jr is the first invariant of the stress tensor, E is Young’s modulus, and Y is Pois- 

son’s ratio. 
Since for continuous deformation of a medium the components of the strain tensor 

satisfy the equations of. compatibility, it follows from Hooke’s law that the components 

of the stress tensor also satisfy certain equations if the deformation is to be continuous. 
These equations are called the equations of compatibility in terms of stresses. Let us 
obtain explicit expressions for them. 

The principal invariants of the stress tensor are defined by the equations 

Jl= g”8p,a. Jp = ~/2ezBr e’Oa’gao Pfio P,,, JS = t/seaBy e”” P,, Ppa Pyr 

The following relations between the invariants of the strain and stress tensors are con- 

sequences of Hooke’s law : 
I-2v 

JI = 7 J1, J2 = $ I(1 + v)” Jz - V (2 -$ J121 

/a = -& ](I + v)~Js - v (1 + v)‘/~Js + v2JlsJ 

Returning to Eqs. (2.10). we see that they may be written as 

(3.2) 

and are clearly functions of the stress invariants. The covariant derivatives of the stress 

and strain tensors are related as follows: 
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vpx %a - - y V,S7,%, - + V,V,Jlg,a 
Therefore, we have 

*+v Aexh = 7 APxx - + A J%tk, v,v aJ1= 
i -2v 
----$-- V,V?&Jr 

V*VEa, + vaviLaxp 
1+v = 7 (VxV”Pj*, + v$7p”p,,) - -g Vx‘iJaJl (3.3) 

c 
l-/-v 

ohx = 7 Doax -+- Foax (3.4) 

D ohx = vJ,pwA + v,P,, - v@P~~, Fohx = V,Jg,, -I- ‘(JiJ&,x - ‘c70J&t (=) 

Substituting Eqs. (3.3) and (3.4) into Eqs. (a. 84), we obtain 

AP,, + + VxV,Jz - +- A Jlgx>. - V,V%, _ V&7”Pxp - 

- g;?‘+ [-+ PoaxDapp - &,~~De~x) - + Poda,+ + F,a,%,w - 
VS 

- %hpFapx - Fo&I*x) + E (1 + V) (cdapp - 
F F c&lip ayx )]=O 

In view of Eqs. (3.2) and (3.5). these equations contain only the components of tbe 
stress tensor and their first and second covariant derivatives. These are then the equations 

of compatibility in terms of stresses which are suitable for geometrically nonlinear me- 

dia. 

Some simplifications of these equations are possible. If we use the equations of equi- 
librium 

VPp,,=-fh 

where jA are the components of the body force, we have 

gppD UP@ = - Zf, - V,Jz, gpPF EllP = - VaJ1 

Taking account of these equations. we mav write the compatibi~~ equations in terms 

of stress in the form Ap,, + &V,O,JI - -&“J&hiV,fh+V;\f,+ 
+ (Llgao + L2ga=gS~P,++L3g~*gSQgY~P*+~F;I) x 

x 
-I 
f+v 
7 IDwax fzf, + Va Jd + P’?&‘rx,wI - 

- + 14,a,V~J1+ Fwax (2f, -I- VzJd + g~P(%~pF~~x + Fo&xlrx)l + 

+ 1~ (IVY+. ,,I EF,a,cI,J~ + 8’ Foap Fapx 1) = @ (3.6) 

The independent equations of this system are determined by the values of x and 1 in 

(1.6). 
We note that Eqs. (3.6) are given in tensor form and contain only covariant compo- 

nents of the stress tensor. However, proceeding from these equations we can obtain others 

containing only contravariant components of stress. All that is needed to do this is to 

apply the operation of raising the scripts in Eq. (3.6). As a result, we obtain the equations 
of compatibility in terms of stresses in the form 
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1 
APy A -+ T+V V”V” JI - j+ AJlgYh + Vx 1” + Va 1” + Ohm,, + b?,,&,~ + 

+ ~,&,~~pppy) {q [ Dokw (21’ + V’ JI) + Q’%“‘wJ - 

- + [DohxVz J1 + ~~~~ (2fa4- vaJI) + g,, (DmhCF1~x + P~PDWJ+ 

+ k (t 5 vj J FoxxVzJ~ + rppFWIPF”‘X I 
I 

= 0 (Z.7) 

where 

PXA = gXGgTAPo,, j’ = g”? f 

D”“x = V%,?. + @POX _ VWPh, FW)*X = VY Jig:). + V” JgWx _ v’” J& 

and the scripts have the values in (1.6). 
In the special case of a rectangular Cartesian coordinate system, the forms (3.6) and 

(3.7) of the compatibility equations in terms of stresses coincide and are 

where 

, aJ, ; , 
Fo).x ax” + Fo).~Fzpw = 0 

The compatibility equations in terms of stresses (3.6) correspond to the general non- 
linear strain-displacement relations (2.18). For small strains and rotations these relations 

are linear and the compatibility equations (2.25) are also linear. In this case, the com- 

patibility equations in terms of stresses are linear as well. It is easy to see that they are 

just the linear part of Eqs. (3.6) 
1 

AP,A + I+ v - V,V,JI - &y AJao. + Vx fn + V,, 1, =o (3.8) 

These equations can be simplified further. In the case under consideration the stresses 
are expressed in terms of the displacements by 

p,, - -+ JAR+ + %(&) (V ?.Wp -I- Vpb) 

It follows from this that the first invariant of the stresses is proportional to the diver- 
gence of the displacements 

II -= , _ 2,, -+pu 

From the divergence of the ‘equations of equilibrium 

V,J, + EAw, = -2(1 + v)f, 

we can express AJ1 in terms of the specified body forces in the form 

AJl=-- +&$V=t, 

Taking account of this result, we write (3.8) in the final form 
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APX, + & V,V,Jl+ &v%xk + VxlA +vA ix=0 (3.9) 

These are the Beltrami-Michell equations of compatibility in terms of stresses which 

are presented in the linear theory of elasticity [4, 51. Raising the scripts x and h, we 

obtain the equations in the contravariant stress components 

APX” + -& vx~AJ~+~V’f;lpX’+vXfh~v~/x=O (3.10) 

In Cartesian coordinates. Eqs. (3.9) and (3.10) have the form 

a”P,, 
_+i- a?Jl al, 

ax”azJ 1 fv azxa2" 
+L_ a/* 

1 -v aza s,,+ ,+2=0 

Thus, the Beltrami-Michell equations of compatibility in terms of stresses correspond 
to geometrically and physically linear elasticity ; Eqs. (3.6) are the generalizations of 

these equations ln the case of geometric nonlinearity. 
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The problem of a circular cylindrical shell of elastic isotropic material subjected to 
concentrated loadings is considered. As is known, such a problem ln two-dimensional 
formulation (based on Kirchhoff-Love hypotheses) reduces to the construction of the 
Green’s function for an elliptic equation in the resolution function. 

A fundamental solution in closed form has been obtained in p, 21 for the shallow 

cylindrical shell equations by using Fourier transforms. A method of the theory of gene- 
ralized functions [4] was utilized in [3] to construct a fundamental solution of the equa- 

tions of the theory of shells of positive Gaussian curvature. 
Fundamental solutions are constructed below for the most prevalent modifications of 

the theory of nonshallow circular cylindrical shells [5- 83. In contrast to n- 33, the “clas- 
sical” method of plane waves and spherical means [9] is utilized which permits, so to 


